Efficient revocable identity-based encryption via subset difference methods

نویسندگان

  • Kwangsu Lee
  • Dong Hoon Lee
  • Jong Hwan Park
چکیده

Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important since a user’s credential (or private key) can be expired or revealed. Revocable IBE (RIBE) is an extension of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the complete subtree (CS) scheme for key revocation. In this paper, we present a new technique for RIBE that uses the efficient subset difference (SD) scheme or the layered subset difference (LSD) scheme instead of using the CS scheme to improve the size of update keys. Following our new technique, we first propose an efficient RIBE scheme in prime-order bilinear groups by combining the IBE scheme of Boneh and Boyen and the SD scheme and prove its selective security under the standard assumption. Our RIBE scheme is the first RIBE scheme in bilinear groups that has O(r) number of group elements in update keys. Next, we also propose another RIBE scheme in composite-order bilinear groups and prove its full security under static assumptions. Our RIBE schemes also can be integrated with the LSD scheme to reduce the size of private keys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method

In view of the expiration or reveal of user’s private credential (or private key) in a realistic scenario, identity-based encryption (IBE) schemes with an efficient key revocation mechanism, or for short, revocable identity-based encryption (RIBE) schemes, become prominently significant. In this paper, we present an RIBE scheme from lattices by combining two Agrawal et al.’s IBE schemes with th...

متن کامل

Fully Secure Unbounded Revocable Attribute-Based Encryption in Prime Order Bilinear Groups via Subset Difference Method

Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of utmost importance since over time an user’s credentials may be revealed or expired. All previously known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends linearly on t...

متن کامل

Revocable Hierarchical Identity-Based Encryption from Multilinear Maps

In identity-based encryption (IBE) systems, an efficient key delegation method to manage a large number of users and an efficient key revocation method to handle the dynamic credentials of users are needed. Revocable hierarchical IBE (RHIBE) can provide these two methods by organizing the identities of users as a hierarchy and broadcasting an update key for non-revoked users per each time perio...

متن کامل

Adaptive-ID Secure Revocable Identity-Based Encryption

Identity-Based Encryption (IBE) offers an interesting alternative to PKI-enabled encryption as it eliminates the need for digital certificates. While revocation has been thoroughly studied in PKIs, few revocation mechanisms are known in the IBE setting. Until quite recently, the most convenient one was to augment identities with period numbers at encryption. All non-revoked receivers were thus ...

متن کامل

Revocable Hierarchical Identity-Based Encryption with Shorter Private Keys and Update Keys

Revocable hierarchical identity-based encryption (RHIBE) is an extension of HIBE that supports the revocation of user’s private keys to manage the dynamic credentials of users in a system. Many different RHIBE schemes were proposed previously, but they are not efficient in terms of the private key size and the update key size since the depth of a hierarchical identity is included as a multiplic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014